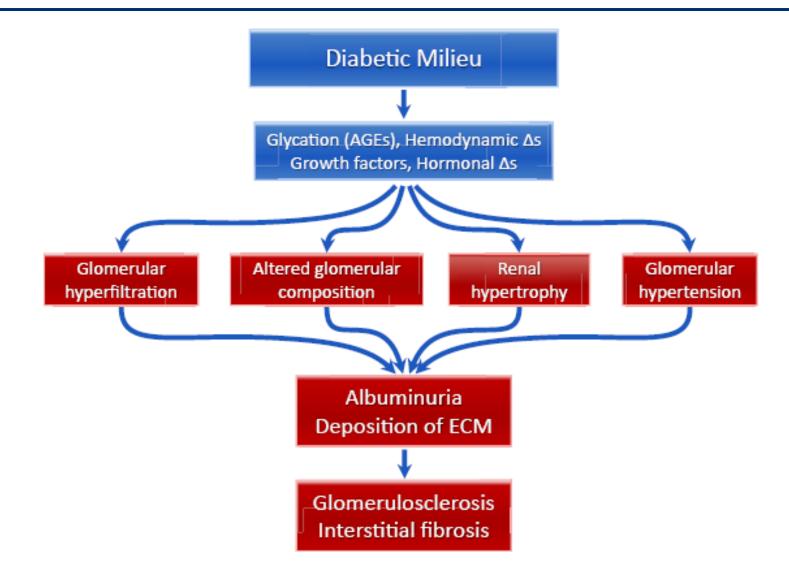


MINICORSO: Diabete, insufficienza renale e malattia cardio-vascolare

Farmaci in nefroprotezione: a che punto siamo?

Luca De Nicola UOC Nefrologia e Dialisi

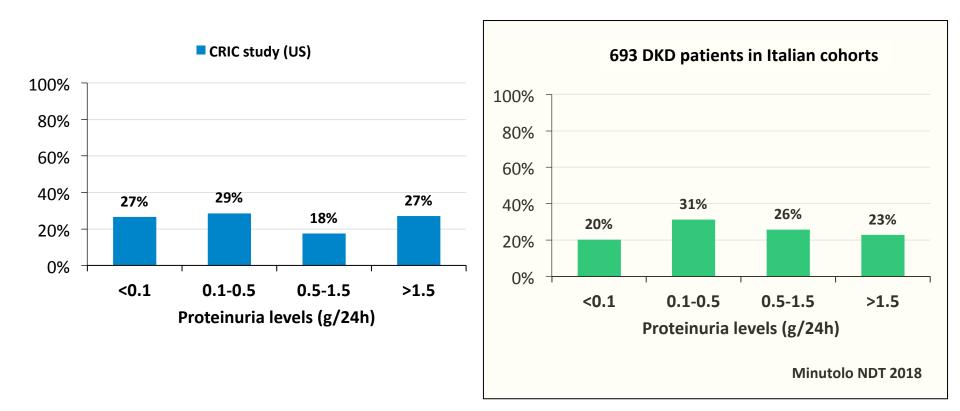
Università degli Studi della Campania Luigi Vanvitelli



Ai sensi dell'art. 3.3 sul conflitto di interessi, pag 17 del Regolamento Applicativo Stato-Regioni del 5/11/2009, dichiaro che negli ultimi 2 anni ho avuto rapporti diretti di finanziamento con i seguenti soggetti portatori di interessi commerciali in campo sanitario:

> -Abbvie -Astrazeneca -Janssen -Vifor

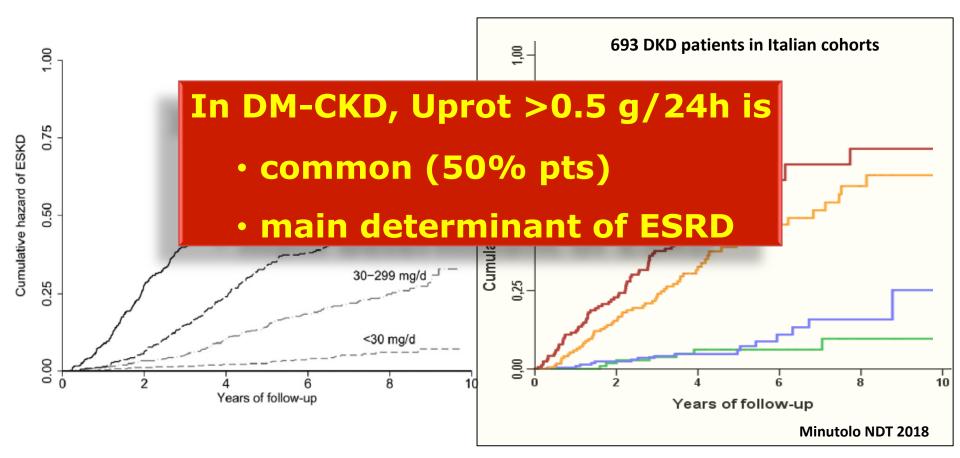
Proteinuria is the main determinant of CKD-DM progression


K. Umanath and J. B. Lewis, AJKD 2018

AJKD

Risk of Progression of Nonalbuminuric CKD to End-Stage Kidney Disease in People With Diabetes: The CRIC (Chronic Renal Insufficiency Cohort) Study

Digsu N. Koye, Dianna J. Magliano, Christopher M. Reid, Christopher Jepson, Harold I. Feldman, William H. Herman, and Jonathan E. Shaw AJKD Vol XX | Iss XX | Month 2018


CRIC participants with diabetes and reduced GFR (n=1,813) stratified by proteinuria

Risk of Progression of Nonalbuminuric CKD to End-Stage Kidney Disease in People With Diabetes: The CRIC (Chronic Renal Insufficiency Cohort) Study

Digsu N. Koye, Dianna J. Magliano, Christopher M. Reid, Christopher Jepson, Harold I. Feldman, William H. Herman, and Jonathan E. Shaw AJKD Vol XX | Iss XX | Month 2018

CRIC participants with diabetes and reduced GFR (n=1,813) stratified by proteinuria

REVERSAL OF DIABETIC NEPHROPATHY IN HUMAN CADAVERIC KIDNEYS AFTER TRANSPLANTATION INTO NON-DIABETIC RECIPIENTS

- Kidneys removed from cadaveric donor with 17-year history of DM1
- Donor had
 ^① Uprot but normal sCreat

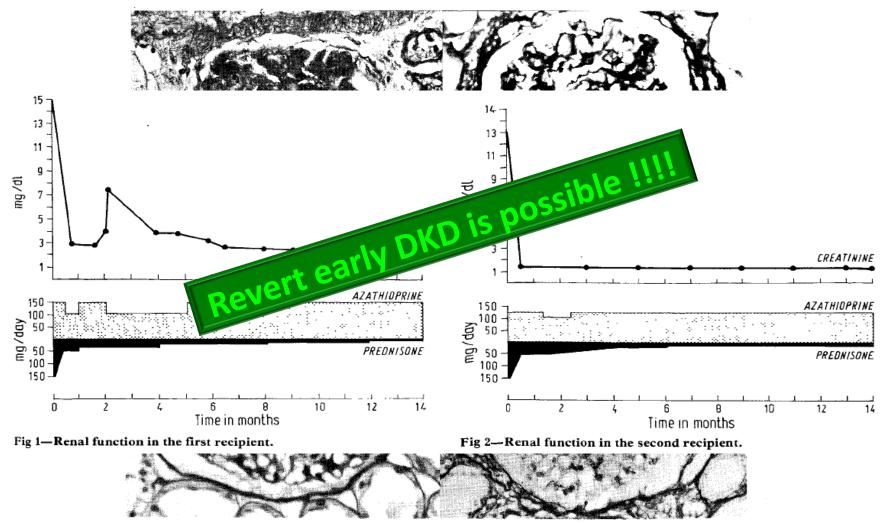


Fig 4—Biopsy specimen seven months after transplantation showing (left) widely open glomerular capillaries with almost normal basemen membrane and mesangium (PAS × 400) and (right) almost normal glomerular architecture (methenamine silver × 400).

THE LANCET, DECEMBER 3, 1983

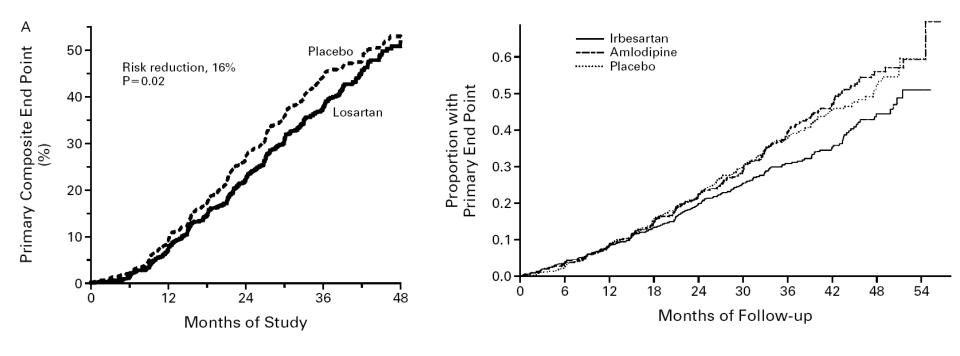
Trials in Diabetic CKD

Residual renal risk in DM-CKD patients under optimal anti-RAS therapy

VOLUME 345

SEPTEMBER 20, 2001

NUMBER 12



EFFECTS OF LOSARTAN ON RENAL AND CARDIOVASCULAR OUTCOMES IN PATIENTS WITH TYPE 2 DIABETES AND NEPHROPATHY

BARRY M. BRENNER, M.D., MARK E. COOPER, M.D., PH.D., DICK DE ZEEUW, M.D., PH.D., WILLIAM F. KEANE, M.D., WILLIAM E. MITCH, M.D., HANS-HENRIK PARVING, M.D., GIUSEPPE REMUZZI, M.D., STEVEN M. SNAPINN, PH.D., ZHONXIN ZHANG, PH.D., AND SHAHNAZ SHAHINFAR, M.D., FOR THE RENAAL STUDY INVESTIGATORS*

RENOPROTECTIVE EFFECT OF THE ANGIOTENSIN-RECEPTOR ANTAGONIST IRBESARTAN IN PATIENTS WITH NEPHROPATHY DUE TO TYPE 2 DIABETES

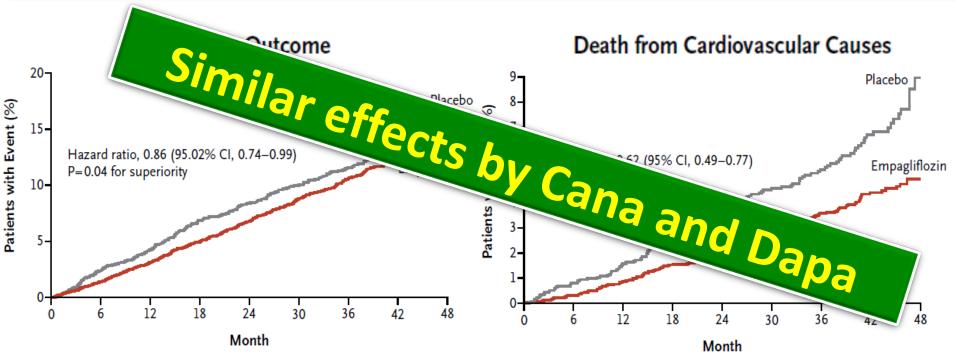
Edmund J. Lewis, M.D., Lawrence G. Hunsicker, M.D., William R. Clarke, Ph.D., Tomas Berl, M.D., Marc A. Pohl, M.D., Julia B. Lewis, M.D., Eberhard Ritz, M.D., Robert C. Atkins, M.D., Richard Rohde, B.S., and Itamar Raz, M.D., for the Collaborative Study Group*

RENAAL Study NEJM 2001

IDNT Study NEJM 2001

RCTs after RENAAL and IDNT

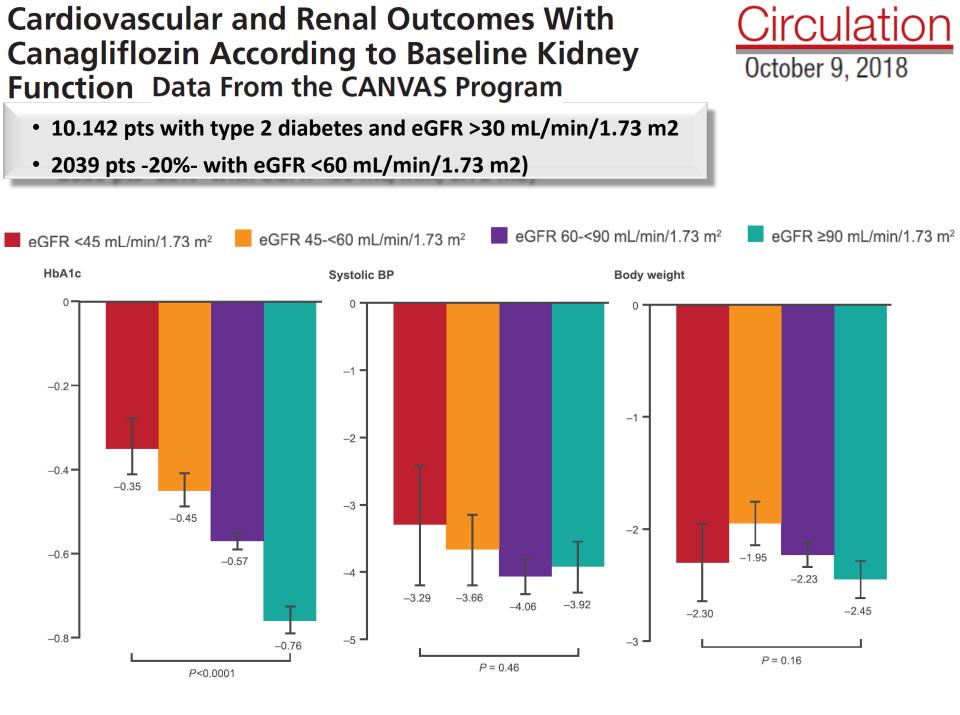
- Dual RAS block: Altitude & NephronVA-D (CKD progression, AKI/High sK)
- Aldosterone-antagonists (Uprot reduction, NO Hard Endpoint)
- Erythropoietin (Hb rise; hard endpoint trial; TREAT; CV/renal; NO Effect)
- Sulodexide (prot reduction; hard endpoint trial; SUN-Overt; **STOP**)
- Sulodexide (alb reduction; surrogate endpoint; SUN-Micro; **NO Effect**)
- Statins (hard endpoint trial; SHARP; CV/renal; CV but NO Renal Effect)
- VDRA-Paracalcitol 1-2 µg/d (prot reduction, VITAL, NO Hard Endpoint)
- Nrf2 agonist (rise in eGFR; hard endpoint; BEACON; STOP for HF risk)
- Anti-TGF-β1 (rise in eGFR, renal; **STOP for Futility**)
- ET_A-RA: SONAR (hard renal endpoint; **STOP for Low Event Rate**)
- SGLT2-I and GLP1-RA: Beneficial Cardiorenal Effects



ORIGINAL ARTICLE

Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes

- N=7,020, High CV risk, Age 63±9 yrs, BMI 30±5; Median FU 3.1 years
- eGFR <60 in 26%, Ualb >30 in 40% (>300 in 27%), 80% under anti-RAS
- Primary composite outcome: CV death, nonfatal MI, or nonfatal stroke

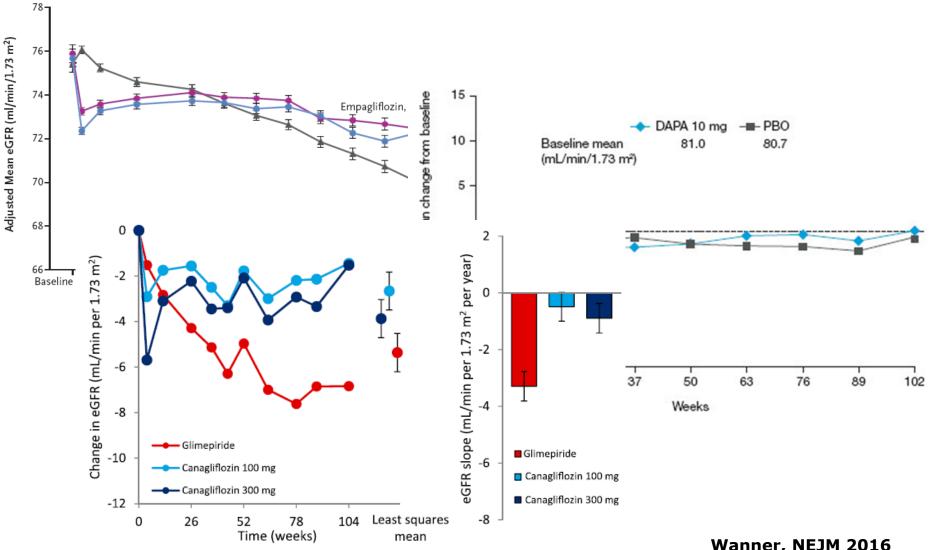


N Engl J Med 2015;373:2117-28.

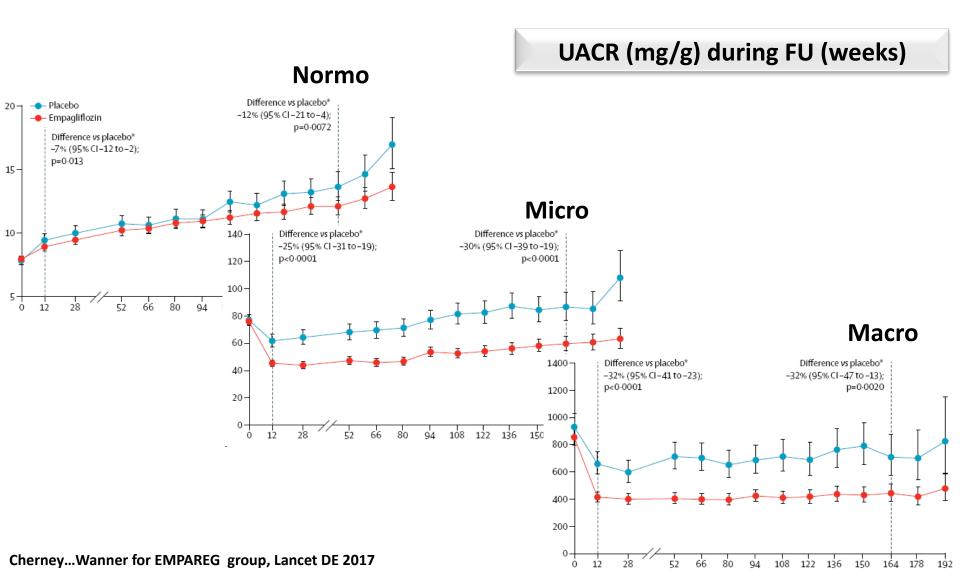
Cardiovascular Protection in EMPAREG by CKD status

	Empaglifioz	zin	Placebo				
	n with event/N (%)	Rate/ 1000 pt-yr	n with event/N (%)	Rate/ 1000 pt-yr	HR (95% CI)		Interaction p-value
Cardiovascular death						1	
All patients	172/4687 (3.7)	12.4	137/2333 (5.9)	20.2	0.62 (0.49, 0.77)	- - -	
Prevalent kidney disease*							0.1926
Yes	94/1498 (6.3)	21.4	65/752 (8.6)	30.1	0.71 (0.52, 0.98)	American	
No	77/3149 (2.4)	8.3	72/1569 (4.6)	15.7	0.53 (0.38, 0.73)		
Hospitalization for heart failure						Association.	
All patients	126/4687 (2.7)	9.4	95/2333 (4.1)	14.5	0.65 (0.50, 0.85)	— •—	
Prevalent kidney disease*							0.5780
Yes	66/1498 (4.4)	15.5	53/752 (7.0)	25.9	0.61 (0.42, 0.87)	-	
No	60/3149 (1.9)	6.6	42/1569 (2.7)	9.4	0.71 (0.48, 1.05)		
All-cause mortality							
All patients	269/4687 (5.7)	19.4	194/2333 (8.3)	28.6	0.68 (0.57, 0.82)		
Prevalent kidney disease*							0.2242
Yes	143/1498 (9.5)	32.5	92/752 (12.2)	42.5	0.76 (0.59, 0.99)		
No	125/3149 (4.0)	13.4	102/1569 (6.5)	22.2	0.61 (0.47, 0.79)		
All-cause hospitalization							
All patients	1725/4687 (36.8)	161.9	925/2333 (39.6)	183.3	0.89 (0.82, 0.96)	•	
Prevalent kidney disease*							0.1234
Yes	663/1498 (44.3)	208.4	375/752 (49.9)	258.9	0.81 (0.72, 0.92)	-	
No	1046/3149 (33.2)	141.8	549/1569 (35.0)	154.1	0.93 (0.84, 1.03)	-	
					0.25	0.5 1 2	4
						HR (95% Cl)	

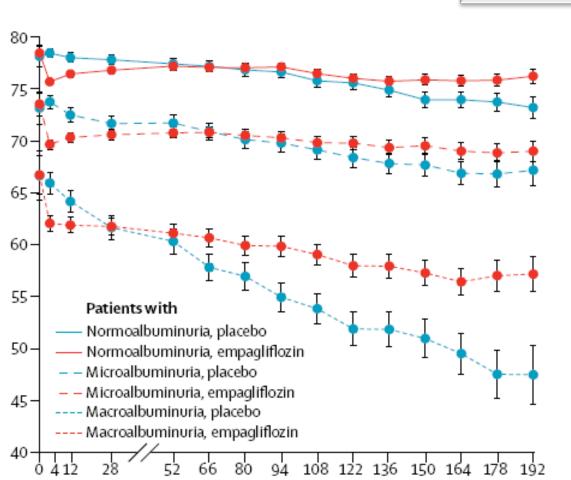
Wanner for EMPAREG group, Criculation 2018



Nephroprotection by SGLT-2-I


SGLT-2-I slow progressive GFR decline...

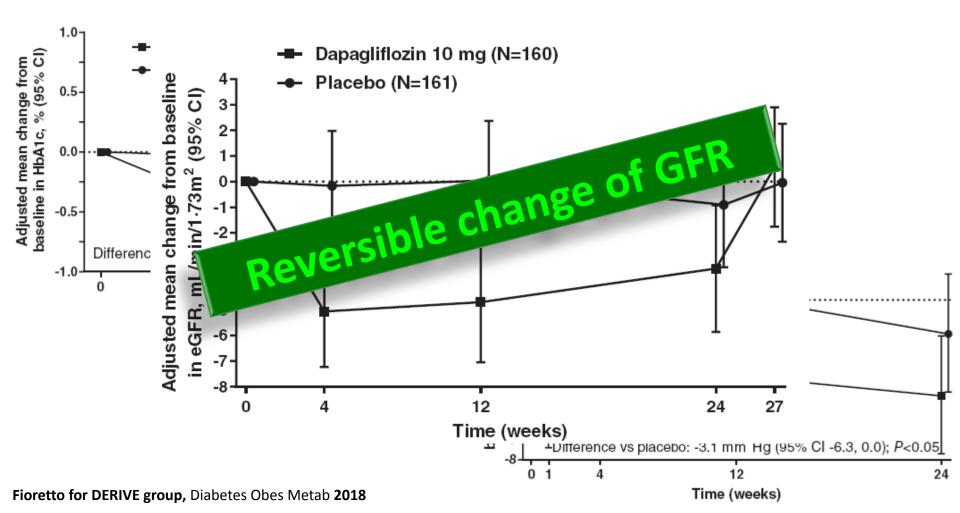
... a Class Effect ... similar to anti-RAS



Wanner, NEJM 2016 Ptaszynska, ADA 2014 Heerspink, JASN 2016

Antialbuminuric effects and Nephroprotection in EMPA by basal level of albuminuria

Antialbuminuric effects and Nephroprotection in EMPA by basal level of albuminuria



eGFR (mL/min/1.73m²) during FU

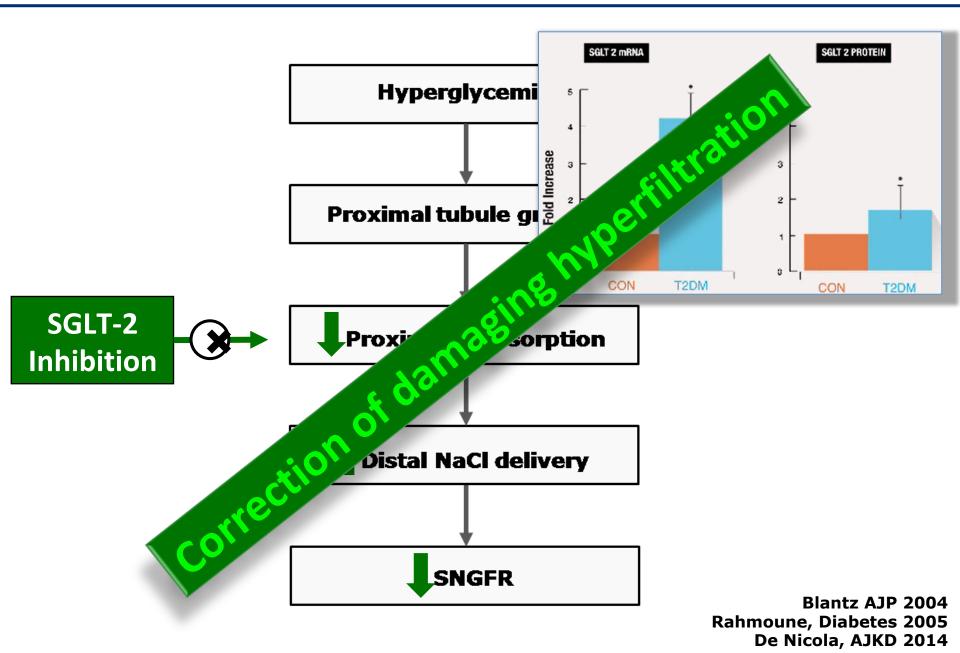
Cherney...Wanner for EMPAREG group, Lancet DE 2017

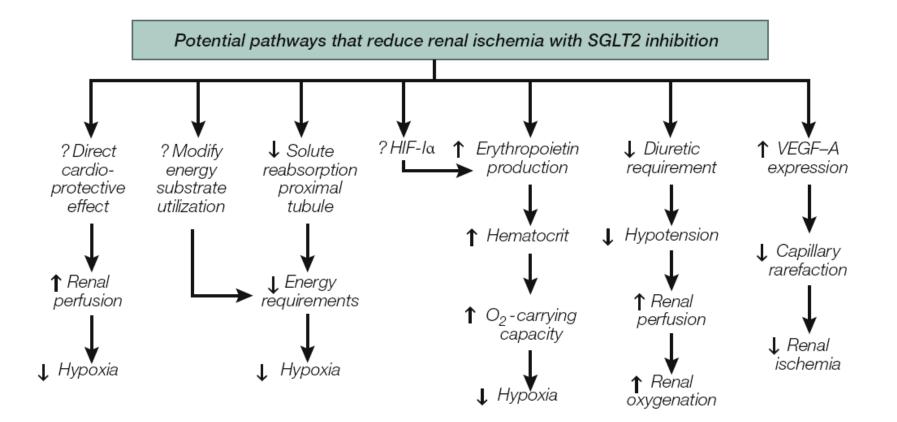
Efficacy of Dapagliflozin in patients with DM2 and moderate CKD

- Double-blind, phase 3 RCT, 24 wk-treatment, 321 DM-CKD stage 3A
- HbA1c 8.1%; MDRD eGFR: 53 mL/min; UACR: 26 mg/g

Empagliflozin and Kidney Function Decline in Patients with Type 2 Diabetes: A Slope Analysis from the EMPA-REG OUTCOME Trial

INITIATION (acute)	LONG-TERM (chronic)	CESSATION (post-treatment)	w-up
Change in eGFR per week from baseline to week 4	Change in eGFR per year from week 4 to LVOT	Change in eGFR per week from LVOT to follow-up	

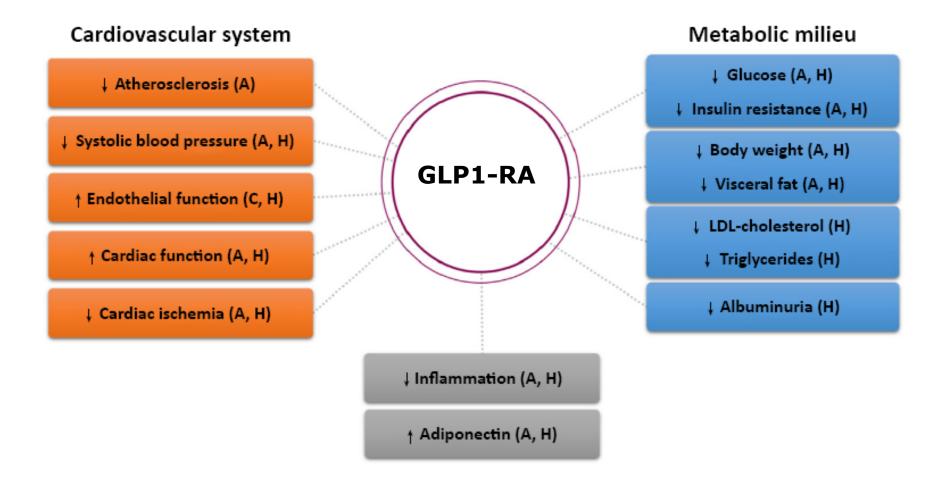

Anti-RAS drugs ⇒ reduction in intraglomerular pressure is associated with a hemodynamic acute decrease in GFR, which is reversible after treatment cessation What about SGLT2-I ?


These data support an hemodynamic effect of Empa, which may lead to reductions in intraglomerular pressure. During chronic maintenance treatment, this glomerular response to Empa may translate into long-term preservation of kidney function

Wanner, JASN published online 12 Oct 2018

The hemodynamic nephroprotective effects of SGLT-2-I

SGLT-2 Inhibitors ... not only anti-hyperfiltration agents

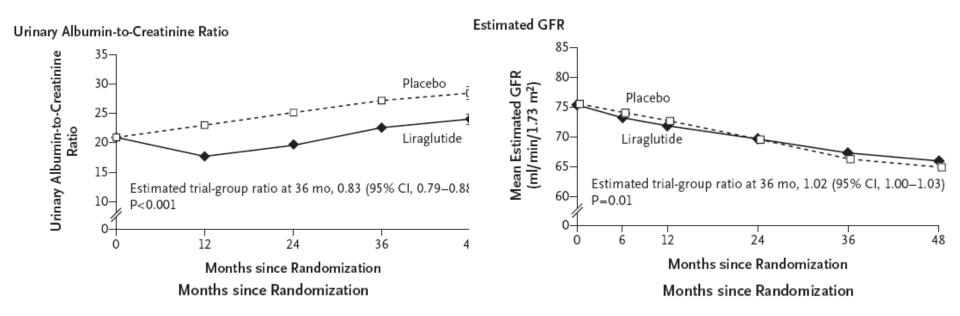


More SGLT-2-I trials in CKD are coming

Agent	Brand Name/Company	Admin/ Route	Half-Life/Dose(sc)	Elimination/Use According to Renal Function (eGFR)		
Shorter-acting (GLP-1RA					
Exenatide	Byetta®/ AstraZeneca (Cambridge, England)	Twice daily/sc	-2.4 hrs/5-10 μg	Glomerular filtration/ contraindicated eGFR <30 mL/min/1.73 m ²		
Lixisenatide	Lyxumia® (EU) Adlyxin™ (US)/Sanofi (Gentilly, France)	Once daily/ sc	–2–5 hrs/ 20 μg	Glomerular filtration/ not recommended eGFR <30 mL/min/1.73 m ²		
Longer-acting G	Longer-acting GLP-1RA					
Liraglutide	Victoza®/ Novo Nordisk (Bagsværd, Denmark)	Once daily/ sc	-13 hrs/ 1.2-1.8 mg	Endogenous metabolism/ not recommended eGFR <30 mL/min/1.73 m ²		
Exenatide QW	Bydureon®/AstraZeneca (Cambridge, England)	Once weekly/ sc	-2.4 hrs/ 2 mg (prolonged release)	Glomerular filtration/ contraindicated eGFR <30 mL/min/1.73 m ²		
Dulaglutide	Trulicity®/ Eli Lilly and Co. (Indiana, USA)	Once weekly/ sc	–4.7 days/ 0.75, 1.5 mg	Endogenous metabolism/ caution eGFR <50 mL/ min/1.73 m ²		
Albiglutide	Eperzan® (Canada, EU) Tanzeum™ (US)/GSK (London, England)	Once weekly/ sc	-4-5 days/ 30, 50 mg	Endogenous metabolism/ caution eGFR <50 mL/ min/1.73 m ²		

COMING SOON: Semaglutide injectable once weekly

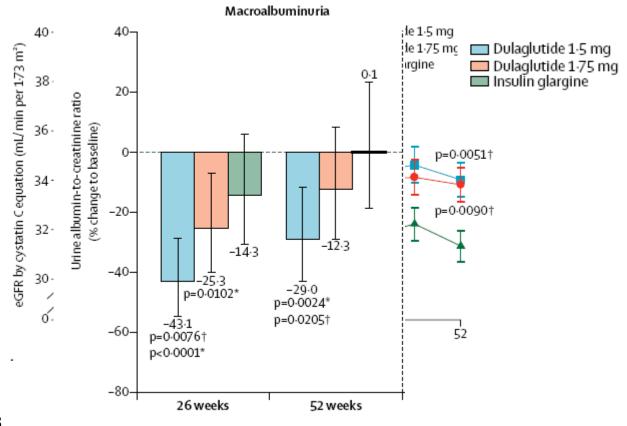
GLP-1-RA: Potential Mechanisms of Cardiorenal Benefits


SGLT-2-I versus GLP-1-RA

Properties/effects	SGLT-2 inhibitors	Glucagon-like peptide-1 receptor agonists
Molecules	Canagliflozin, dapagliflozin, empagliflozin, ertuglifozin	Exenatide, liraglutide, lixisenatide, semaglutide
Administration	Oral, once a day	Subcutaneous, once a day to once a week
Target organ	Kidney (proximal tubule)	Endocrine pancreas
Effect	Forced glucosuria	Enhanced insulin secretion (incretin mimetics)
	Reduction in glucose toxicity	
Primary mechanism	Insulin-independent	Glucose-dependent
Effect on glucagon	Increased secretion	Decreased secretion
Food intake	Increase (compensatory mechanism)	Reduction (central and peripheral effects)
Reduction in HbA1c	-0.7 to -1.0%	-1.0 to -1.2%
Risk of hypoglycemia	Low (except if added to sulfonylurea or	Low (except if added to sulfonylurea or insulin)
	insulin)	
Change in body weight	Diminution	Diminution
Arterial blood pressure	Lowering effect	Lowering effect
Other effects	Increase in haematocrit	Reduced postprandial hypertriglyceridaemia
	Reduction in serum uric acid	Anti-atheroclerotic effects (?)
Fatty liver	Reduced	Reduced
Adverse events	Mycotic genital infections	Nausea, vomiting
	Urinary tract infections (rare)	Pancreatitis (initially suspected but not confirmed)
	Dehydration/hypotension	
	Euglycaemic ketoacidosis	
	Fractures, amputations (canagliflozin)	
Use in patients with renal	No initiation if eGFR < 60 ml/min/1.73 m ²	Use now approved if eGFR > 15 ml/min/1.73 m ²
impairment	Stop if eGFR < 45 ml/min/1.73 m ²	
Cardiovascular	Superiority versus placebo (EMPA-REG	Superiority versus placebo (LEADER, SUSTAIN 6)
protection	OUTCOME, CANVAS)	
Prevention of heart	Less hospitalization for heart failure	No effect demonstrated
failure	(EMPA-REG OUTCOME, CANVAS)	
Renal protection	Proven in EMPA-REG OUTCOME and	Proven in LEADER
	CANVAS	

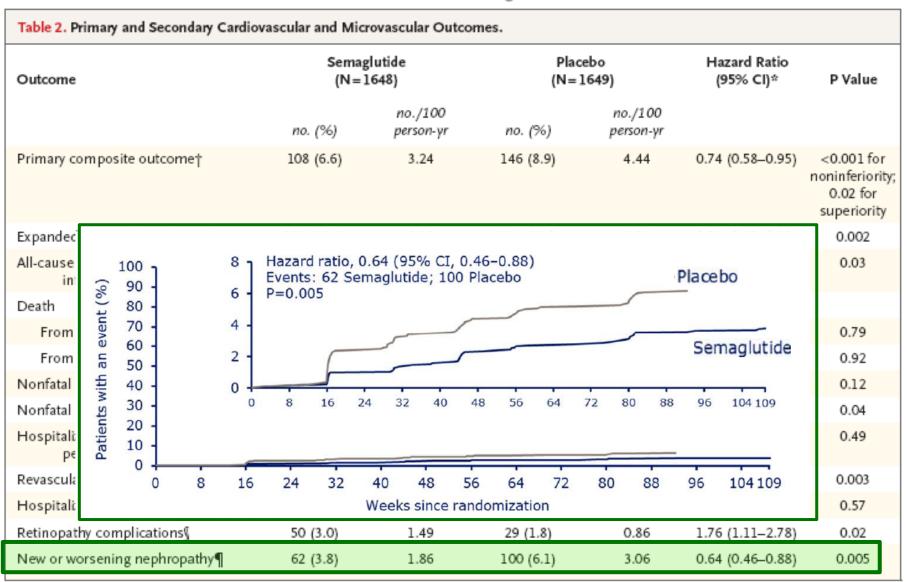
The NEW ENGLAND JOURNAL of MEDICINE

Liraglutide and Renal Outcomes in Type 2 Diabetes


- 9340 patients with type 2 DM and high CV risk
- High Ualb 11%, eGFR<60 22%
- Median follow-up 3.84 years
- Composite renal outcome: new-onset persistent macroUalb, persistent doubling of the sCreat and eGFR <45, need for continuous RRT, death due to renal disease

J Mann, LEADER, NEJM 2017

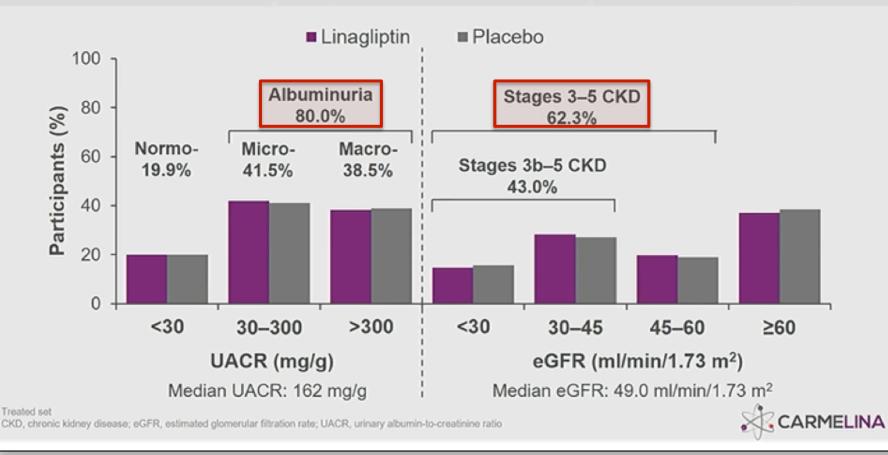
Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial

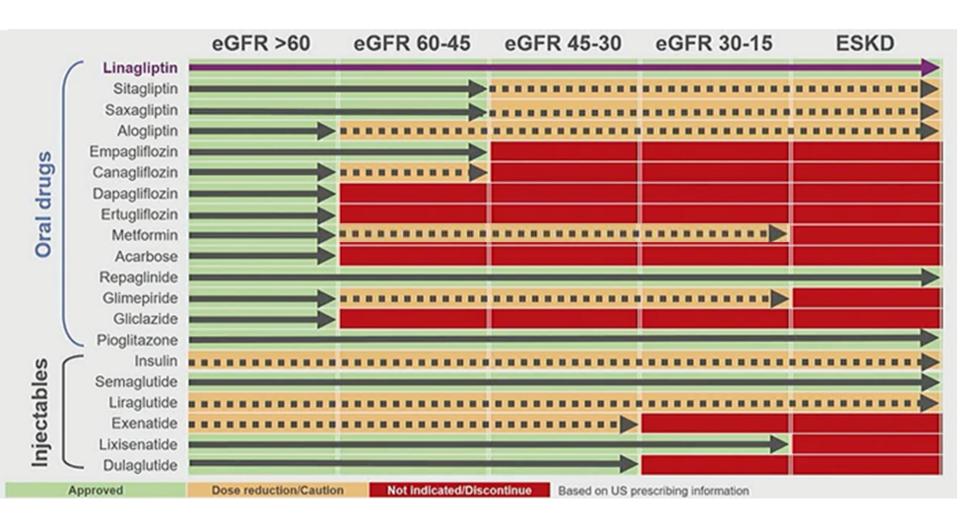

- 577 patients with type 2 DM and CKD stage 3 and 4
- High Ualb 78%, eGFR 38
- Follow-up 18 months
- Secondary outcomes: change in eGFR

K Tuttle, Lancet DE 2018

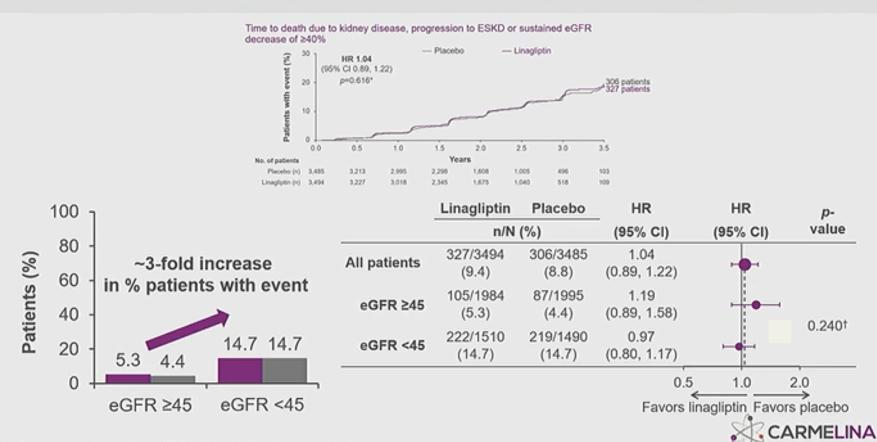
Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes

SUSTAIN-6 Investigators



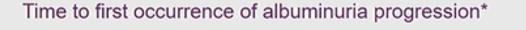

CARMELINA trial in DM2 ASN, 24-28 Oct 2018, San Diego (CA)

CARMELINA included a large proportion of patients with kidney disease


Patients with type 2 DM and CKD have limited

glucose-lowering treatment options

CARMELINA trial in DM2 ASN, 24-28 Oct 2018, San Diego (CA)


Effects on key secondary kidney outcome

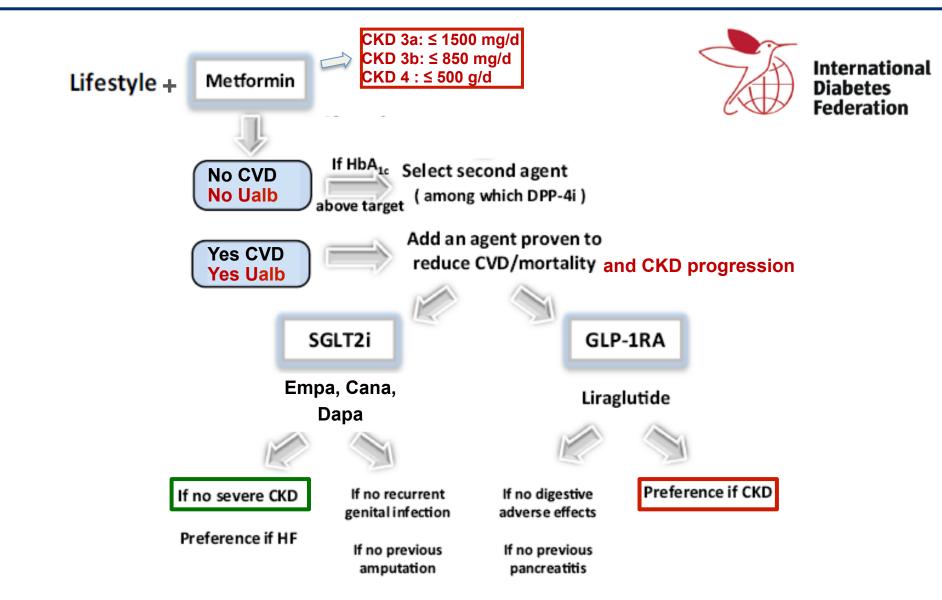


p-value for treatment interaction; eGFR <45 and ≥45 subgroup analysis was post-hoc.</p>

CARMELINA trial in DM2 ASN, 24-28 Oct 2018, San Diego (CA)

Lingaliptin significantly reduced the risk of progression of albuminuria

Linagliptin event rate 21.36/100 PY Placebo event rate 2.4.54/100 PY


Treated set, Kaplan-Meier estimate. Hazard ratio and 95% CI based on Cox regression model with terms for treatment group (p=0.0034) and region (p<0.0001) *change from normo- to micro- or macroalbuminuria, or from micro- to macroalbuminuria; *two-sided

Take-Home

New antidiabetic approach in non-dialysis DM2-CKD

Modified from Scheen for the Int. Diab. Fed., Diab Res Clin Practice 2018